Review

The Case for a Novel Therapeutic Approach to Dementia: Small Molecule Hepatocyte Growth Factor (HGF/MET) Positive Modulators 2 3 4 5

Hans J. Moebius[∗] and Kevin J. Church

Athira Pharma, Inc., Bothell, WA, USA 8

Pre-press 14 January 2023

7

EXECUTE:
 EXECUTE:
 EXECUTE:
 EXECUTE:
 EXECUTE:
 EXECUTE:
 EXECUTE:
 EXECUTE:
 EXECUTE:

TOD SOSTIVE

TOD SOSTIVE

TOD SOSTIVE

TOD SOSTIVE:

TOD SOSTIVE:

TOD SOSTIVE:

TOD SOSTIVE:

TOD SOSTIVE:

TOD **Abstract**. An estimated 6.5 million Americans aged 65 years or older have Alzheimer's disease (AD), which will grow to 13.8 million Americans by 2060. Despite the growing burden of dementia, no fundamental change in drug development for AD has been seen in > 20 years. Currently approved drugs for AD produce only modest symptomatic improvements in cognition with small effect sizes. A growing mismatch exists between the urgent need to develop effective drugs for symptomatic AD and the largely failed search for disease modification. The failure rate of clinical trials in AD is high overall, and in particular for disease-modifying therapies. Research efforts in AD have focused predominantly on amyloid- β and tau pathologies, but limiting clinical research to these "classical hallmarks" of the disease does not address the most urgent patient, caregiver, or societal needs. Rather, clinical research should consider the complex pathophysiology of AD. Innovative approaches are needed that provide outside-the-box thinking, and re-imagine trial design, interventions, and outcomes as well as progress in proteomics and fluid biomarker analytics for both diagnostics and disease monitoring. A new approach offering a highly specific, yet multi-pronged intervention that exerts positive modulation on the HGF/MET neurotrophic system is currently being tested in mid-to-late-stage clinical trials in mild to moderate AD. Findings from such trials may provide data to support novel approaches for development of innovative drugs for treating AD at various disease stages and may offer benefits for those already symptomatic and disease alteration in AD and other neurodegenerative diseases. 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Keywords: Alzheimer's disease, hepatocyte growth factor, HGF/MET, neurodegeneration, neurotrophic, pathogenesis, synaptogenesis 23 24

²⁵ **INTRODUCTION**

 Currently an estimated 6.5 million Americans aged 65 years or older have Alzheimer's disease (AD), and as the population in the United States (U.S.) continues to age, it is estimated that 13.8 million Americans will have AD by 2060 [1]. Globally, it is estimated 29 that the number of people with dementia will increase $\frac{30}{20}$ from 57 million in 2019 to 153 million by 2050 [2]. $_{31}$ Despite the enormous personal and economic burden 32 of AD $[3, 4]$, and the extensive investment in drug $\frac{33}{2}$ development for AD, promising early results were 34 recently reported with lecanemab in early AD [5], but 35 only one product, aducanumab, has been approved in ₃₆ the last 19 years. 37

Thus, despite extensive clinical development 38 efforts, a critical need exists for effective drugs for 39

ISSN 1387-2877 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the [Creative Commons Attribution-NonCommercial License \(CC BY-NC 4.0\).](https://creativecommons.org/licenses/by-nc/4.0/)

[∗]Correspondence to: Hans J. Moebius, MD, PhD, Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA 98011, USA. Tel.: +1 866 725 0930; E-mail: [hans.moebius@athira.com.](mailto:hans.moebius@athira.com)

 the treatment of AD, and it may be greatest for those with mild to moderate AD. Disease acceleration is most pronounced at this stage [6, 7] and the finan- cial burden to payors and society is higher than in the pre-dementia stage [8]. Also, molecular approaches to clinical intervention are needed that consider the heterogeneity of causative factors in AD, along with past failed efforts while focusing on novel drugs that address biology other than amyloid-β (Aβ) and tau. This review highlights this critical need in the current landscape of clinical development, consid- ers failed clinical trials to date, and provides insights into the need for identifying novel pharmacological approaches and study designs to enhance progress in drug development in AD.

⁵⁵ **IMPACT OF ALZHEIMER'S DISEASE**

 Currently, total healthcare costs for AD in the US are estimated at \$300 billion, which is expected to rise to>\$1 trillion by 2050 [1]. Key factors contributing to the economic burden of AD include disease sever- ity, dependence level, rate of institutionalization, and comorbidity [4]. Furthermore, analyses of the costs of AD and dementia to society usually are underes- timated because they fail to include costs for home ⁶⁴ safety modifications, adult day care, and the impact on caregiver health and productivity [9]. Considering the burgeoning prevalence of AD globally, we need to understand better both direct and indirect costs of AD to avoid an impending health care crisis [10]. Data from a claims database of outpatients at a mem- ory clinic were used to evaluate medical costs and caregiver burden and demonstrated that direct med- ical costs increased as cognitive deficits increased, and importantly, caregiver burden increased with the severity of the patients' cognitive deficits [11]. Oth- ers have reported the importance of indirect costs, which are associated with considerable societal and personal burden, including quality of life and care- giving, and are usually not factored into overall costs [12]. Costs for those with AD in the community healthcare setting were significantly lower in com-81 parison to costs in a long-term care setting [13], and the transition into the long-term care setting increased total costs of dementia care also from a societal perspective.

 Thus, any treatment that delays nursing home placement for people with AD has the potential to 87 result in substantial economic benefits by reducing indirect costs [4, 14, 15]. Nursing home placement

contributes to loss of independence and a decrease 89 in physical and mental health with an associated 90 increase in morbidity and mortality, and often is 91 the most expensive option for family and caregivers. ⁹² Thus, a truly effective treatment that delays progres-
93 sion in symptomatic AD has the potential for dramatic 94 cost savings $[4]$. A number of studies have shown 95 a delay or reduction in nursing home placement 96 from treatment with currently approved AD therapies 97 with cholinesterase inhibitors and memantine [16– 98 19]. Further, a program designed to improve caregiver $\frac{99}{99}$ well-being reduced nursing home placement of per-
100 sons with AD $[20]$. A model of the effect of reduced 101 nursing home use with effective treatments for AD 102 projected billions of dollars saved for reduced nursing home placement $[21]$. Another study of societal 104 benefits from a treatment that slowed disease progression by 30% projected a reduction in costs of \$5 106 trillion over 20 years in the US $[22]$.

cost m AD, along with cost savings [4]. A number of studies have
cusing on novel drugs
and and or reduction in nursing home plane
training on novel drugs
and efform transmit with currently approved AD find
this critical ne Over time, patients with AD often develop symp-
108 toms that are beyond the capabilities of caregivers 109 to manage with the result that patients end up in a 110 long-term care facility and incur an enormous eco-
111 nomic burden $[9, 11]$. Thus, any delay in symptom 112 onset or progression may result in a substantial impact 113 on caregiver and economic burden. In particular, 114 behavioral and psychological symptoms of dementia 115 $(BPSD)$ occur in 90% or more of all dementia patients 116 and include symptoms of agitation, aggression, apathy, anxiety, depression, aberrant motor behavior, 118 elation, irritability, disinhibition, delusions, hallucinations, and sleep or appetite changes $[8, 23-25]$. The BPSD spectrum is associated with poor outcomes, including increased burden among patients 122 and caregivers, more frequent hospitalization, and 123 increased health care costs $[26]$. Thus, a high medical 124 need exists for novel drugs and non-drug therapies to 125 improve outcomes in patients developing BPSD $[8, 126]$ 27]. New therapeutic approaches with the ability to 127 address any impact of BPSD may also improve the 128 burden of caregivers $[28]$.

LANDSCAPE OF ALZHEIMER'S DISEASE DRUG DEVELOPMENT

Despite the growing burden of dementia world-
132 wide, no fundamental change in the approaches to 133 drug development for AD has occurred in $>$ 20 years 134 [29–32]. Current fully approved drugs for AD are 135 neurotransmitter targeted and produce consistent but 136 modest improvements in cognition, especially for 137 those with advanced disease, with small effect sizes and a waning effect over time [33–36]. Some statis- tically significant effects on select BPSD also have 141 been observed, e.g., with memantine [37].

 A mismatch exists between the urgent need to develop effective drugs for secondary prevention and treatment of symptomatic AD and the yet largely failed track record of clinical development programs. Currently, the failure rate for clinical trials in AD is very high overall, and in particular for disease- modifying therapies [27, 29, 32, 38]. Research efforts 149 in AD focus almost exclusively on \overrightarrow{AB} and tau pathologies, including recent efforts with monoclonal antibodies for active or passive vaccination [30, 39– 41]. Although the search for the "holy grail" of AD drug development producing tangible disease mod- ification has been disappointing, prevention of the symptomatic stages of AD remains an important goal. For prevention trials in AD, clinically-defined nearly asymptomatic subjects with pre-dementia based on experimental diagnostic criteria, rather than symp- tomatic patients must be studied, which requires trials of long duration (>12 months) in large popu- lations (>1000 patients) [27, 38, 42]. This, in turn, poses challenges for how representative these trial populations are of the majority of patients need- ing treatment, and the time point of diagnosis in the general population. Further, the related debate about the definition of a minimum clinically mean- ingful effect and relevant surrogate biomarkers is ¹⁶⁸ ongoing.

 Despite the high failure rate in clinical trials, the majority of clinical development programs are using randomized, parallel-arm trial designs. How- ever, alternative trial designs, such as staggered start/randomized withdrawal designs may improve the success rate of clinical trials for demonstrat- ing efficacy by slowing progression in AD [32, 42–45]. Several challenges need to be addressed when designing clinical studies including appropri- ate identification of the patient population, selection of relevant clinical endpoints, and adequate duration of follow-up [38, 42, 46]. Studies in pre-dementia stage AD need to incorporate imaging and biomarkers to confirm the presence of disease prior to clini- cal symptoms [47] and target engagement by the investigational treatment, to select specific patient populations more likely to demonstrate clinically meaningful improvement with treatment [40, 42, 43]. Thus, disease-modifying treatments require study design features that are markedly different from symptomatic treatments [27].

Another critical limitation of pre-dementia trials 190 is the inevitable reliance on experimental diagnostic 191 criteria, as established by the $A/T/N$ system, which 192 includes the classical "hallmarks" of amyloid and tau 193 accumulation [47]. The $A/T/N$ system characterizes 194 individuals using biomarkers of AD pathophysiology 195 using the A β pathway (A), tau-mediated pathophys-
196 iology (T) , and neurodegeneration (N) [47] and is 197 independent of clinical assessment of cognitive sta- ¹⁹⁸ tus [48]. The A/T/N system is supposed to provide a 198 more precise division of the continuum of AD based 200 on pathology but may be limiting since different 201 biomarkers for defining A/T/N are not interchange-
202 able. Each component of biomarkers included in the 203 A/T/N classification system contributes differently 204 to the staging of AD, and the optimal combina- ²⁰⁵ tions for predicting cognition may differ by cognitive 206 status [49]. An updated A/T/X/N system has been 207 proposed to accommodate a broader spectrum of 208 pathophysiology, where X represents novel candi-
209 date biomarkers for additional pathophysiological 210 mechanisms such as neuroimmune dysregulation, 211 synaptic dysfunction, and blood-brain barrier alter-
212 α ations [50]. 213

D and the yet largely using the AB pathway (A), tail-mediated path
development programs. iology (T), and neurodegeneration (N) [47]
and neurodegeneration (N) [47] and neurodegeneration (N) [47]
particular for since and th Accumulating evidence is consistent with a com-
214 plex, decades-long, cellular phase of AD that ²¹⁵ produces dysfunctional neuronal, glial, and endothe- ²¹⁶ lial mechanisms that contribute to irreversible brain 217 damage [43, 51–53]. AD is described as a brain disorder that results from a complex interplay of loss of 219 synaptic homeostasis and dysfunction in the highly 220 interrelated endosomal/lysosomal clearance path- ²²¹ ways in which the precursors, aggregated species, 222 and post-translationally modified products of $A\beta$ and \qquad 223 tau play important roles [53]. Based on this descrip- ²²⁴ tion, the search continues for targets that substantially ₂₂₅ change the clinical course in persons with AD; 226 more promising trial results were recently reported ₂₂₇ for lecanemab $[5]$, an investigational humanized 228 monoclonal antibody recognizing protofibrils and 229 aimed to prevent deposition of $A\beta$. Recent advances 230 in proteomics provide increased evidence that the 231 pathophysiology of AD extends beyond the classi-
232 cal "hallmarks", i.e., amyloid and tau accumulation, 233 to other mechanisms resulting in neurodegeneration 234 [39, $54-57$]. For instance, persons with no cognitive 235 impairment can demonstrate biomarker evidence of 236 $\text{A}\beta$ pathology and may develop no clinical manifes-
237 tations of AD in their lifetime $[58]$. In addition, a 238 pattern of biomarkers consistent with AD may be 239 found in other brain diseases in which AD pathology presents as a comorbidity. Recently, the incidence ²⁴¹ of co-morbidity of AD and cerebrovascular disease and its relevance for cognitive outcome was examined in those with autopsy-confirmed AD [59]. Increased functional and cognitive decline was found in those with AD and co-morbid cerebrovascular disease, and ²⁴⁷ the presence of cerebrovascular disease enhanced the effects on AD neuropathology. These repeat findings, in a substantial proportion of subjects diagnosed clin- ically as AD, suggest an additive and even synergistic effect of co-morbid cerebrovascular disease on the neuropathology associated with AD.

y. These repeat findings,
solutional changes in the research and developsing solutions to find and open up new avenues to successe
various transform of the and open up new avenues to successes wascular disease on the
into Meanwhile, it has been demonstrated that amyloid and tau accumulation poorly reflect the intricate cell-255 mediated pathophysiology of AD [39, 54–57, 60, 61]. Animal models have failed to adequately replicate the pathology of the condition [48, 54, 57, 62]. Such a $_{258}$ neuron-centric, linear cascade initiated by A β and leading to dementia suggests a direct causality that is not compatible with clinical observations [44, 51, 54–57, 62, 63]. Focusing almost exclusively on A β and tau mechanisms also ignores results from post- mortem studies indicating a substantial contribution from vascular processes in the pathogenesis of AD [64, 65]; more than 30% of subjects with clinically diagnosed AD are classified postmortem as mixed dementia, a fact largely ignored by clinical develop- ment, other than only their exclusion from clinical trials is sought. Instead, the long cellular phase of dysregulation of the interplay between neurons, astro- cytes, microglia, inflammatory, and vascular changes suggests the need for a broader therapeutic approach [53, 67, 68]. Varied research findings support such observations, for instance elevated concentrations of TNF- α in AD brains; TNF- α was shown to medi- ate multiple pertinent aspects of neurodegeneration, including synaptic dysfunction and neuronal decay [69]. Despite such findings, amyloid and tau accumu- lation continue to be the main focus for the diagnosis and subsequent selection of patients for clinical tri- als [70]; and thus, amyloid and tau accumulation continue to be the most prominent targets for inter- ventional trials in AD [29, 41, 51, 56, 57]. This traditional focus may lead to a circular logic of patient selection, therapeutic intervention, and out- comes, e.g., reduced plaque load. Instead, subject inclusion criteria for clinical trials in AD might also consider more recent insights based on proteomics, which suggest more inter-individual heterogeneity in glial subtypes than in neurons [39, 55, 71]. A combined biomarker panel could potentially better distinguish between healthy subjects, asymptomatic and symptomatic AD patient subtypes when com-

pared to a system based on A β and tau alone [52, 294 55]. Selection of such trial populations may provide a ²⁹⁵ departure from a circular logic of diagnosis and treat- ²⁹⁶ ment based only on the amyloid hypothesis [39, 44, 297 55]. Thus, adoption of a broader, more holistic view of ²⁹⁸ the emerging pathophysiology of AD could result in 299 substantial changes in the research and development 300 field and open up new avenues to success. 301

NOVEL APPROACHES TO CLINICAL ³⁰² **TRIAL DESIGN FOR ALZHEIMER'S** ³⁰³ **DISEASE** 304

The lack of progress in developing effective thera- 305 pies for AD may be attributed to a lack of appreciation $\frac{306}{200}$ of the complex pathophysiology of the condition, ³⁰⁷ but also to clinical trial design features that are not $\frac{308}{200}$ conducive to establishing drug effectiveness [72]. 309 Blood-based biomarkers (e.g., neurofilament light 310 chain, glial fibrillary acidic protein) may become 311 essential in clinical trials to identify appropriate 312 patients, determine the status of disease, confirm 313 target engagement, establish the optimal dose, and 314 monitor treatment response [72]. Most novel trials 315 use an adaptive Bayesian design to predict efficacy 316 or failure of individual interventions; interim analyses 317 allow early termination of a study when a predefined 318 futility signal is detected, with an aim to accelerate the 319 development process. Such adaptive approaches can ³²⁰ help reduce development times but also have proven 321 treacherous in the past. 322

For novel interventions to actually demonstrate 323 clinical efficacy at later stages, a more holistic 324 approach also to clinical trial design is warranted. 325 This in turn necessitates a re-focus on the symp-
326 tomatic stage of AD, which only represents a minority 327 of trials conducted in the past 20 years. At the $\frac{328}{2}$ present time, and in the absence of further develop- 329 ment of diagnostics for AD $[40]$, using a syndromal 330 diagnosis at the dementia stage to identify patients 331 to enroll in clinical trials provides a means of 332 identifying real-life populations rather than highly 333 experimental sub-populations of patients. Clinical tri-
₃₃₄ als should incorporate proven trial design features 335 of patients in the dementia stage utilizing validated 336 endpoints to minimize the need for 12 - to 24 -month 337 double-blind follow-up periods, requiring years for 338 $completion. Such designs also could include specific $339$$ improvements, e.g., innovative composite endpoints 340 like the Integrated Alzheimer's Disease Rating Scale 341 $(iADRS)$ [73], the AD Composite Score (ADCOMS) 342

 [74] to improve sensitivity to change over time, and the Global Statistical Test (GST) [75], which may provide an unbiased, integrated readout of therapeu- tic effects; incorporating such composite endpoints ³⁴⁷ may help increase credibility of the real-life utility of a novel intervention. Other examples for trial inno- vations are passive monitoring of motor speed using mobile phones [76] for screening purposes, or the utilization of prognostic information from subjects into randomized controlled trials to enable smaller control groups while maintaining statistical power [77].

 Re-focusing on the somewhat neglected group of patients with mild to moderate AD with suitable interventions for the symptomatic stage could prove helpful, as it may provide advantages for clinical tri- als of investigational drugs. The mild to moderate population experiences the most accelerated progres- sion of cognitive impairment and develops also other important, non-cognitive changes, e.g., BPSD. It is arguably the population with presently the largest unmet medical need [6, 7]. Ultimately, a development program that targets mild to moderate AD should have a greater likelihood of success because a clinical diagnosis is possible rather than reliance on indirect criteria [42] to predict cognitive decline; a drug- placebo difference is also more likely; and there is an undisputed regulatory pathway for approval, based 371 on precedent [78].

HGF/MET: PRECLINICAL FINDINGS RELEVANT TO ALZHEIMER'S DISEASE

 The complex multifaceted processes that con- tribute to neurodegeneration in AD warrant novel treatment approaches that seek to improve the health and function of neurons and supporting glia. Pro- moting the activity of neurotrophic factors, including the hepatocyte growth factor (HGF), is an example for a therapeutic approach that is neuroprotective and stimulates regenerative mechanisms [79]. HGF is a ubiquitous signaling protein that activates the receptor tyrosine kinase MET [80, 81]. As a potent neurotrophic growth factor, HGF is involved in numerous processes including embryonic and organ development, regeneration, and inflammation [82], and is upstream of other important trophic factors in the central nervous system, e.g., brain-derived neu- rotrophic factor (BDNF). HGF enhances neuronal survival and regeneration including hippocampal,

midbrain dopaminergic, cerebral cortical, motor, ³⁹¹ sensory, and cerebellar granular neurons [79, 80]. 392 HGF signaling exhibits pro-neural and pro-cognitive 393 effects, which offer the potential for treating the 394 neurodegenerative cascade observed in AD while 395 promoting neuronal survival [79, 83–86]. HGF sig-
₃₉₆ naling is also active in glial cells $[87]$ where it $\frac{397}{2}$ modulates the expression of glial-specific glutamate $\frac{398}{2}$ transporters in astrocytes, which may reduce gluta-
399 mate cytotoxicity [88]. 400

go of motor speed using is also active in glad cells [8/] way for proposes, or the modulates the expression of gilal-specifie glue
promino from subjects transportes in anterceives and cells [8/] way reduce
thrist transport The effects of increasing HGF signaling have been evaluated *in vitro* and *in vivo*. *In vitro*, HGF enhanced ⁴⁰² synaptic long-term potentiation in the CA1 region of the hippocampus [89], and overexpression of HGF $_{404}$ *in vivo* improved memory and learning after cerebral infarction in rats [90]. Augmentation of the HGF/MET system slowed disease progression and 407 restored function in rodent models of AD [91] and other neurodegenerative disorders in non-human pri- ⁴⁰⁹ mate models [92–96]. Elevated concentrations of 410 HGF in the CSF of AD subjects have been reported and may be a result of blood-brain barrier dysfunc- ⁴¹² tion or a response to neurological damage due to AD pathology [97–99]. Conversely, MET expression is markedly decreased in AD brains, particularly in hippocampal pyramidal neurons, suggesting that this reduced MET activity may negatively affect hippocampal neuron survival and function in AD [100]. In AD, the underlying brain pathology is characterized by loss of synaptic connections $[101-104]$. HGF, 420 as a key neurotrophic factor, enhances synaptogene- ⁴²¹ sis and neuroplasticity, which may have widespread functional relevance in the symptomatology of AD $[79, 80]$.

Multiple studies were conducted to identify 425 brain-penetrant small molecules that activate the 426 HGF/MET system, and to evaluate the neuroactivity of a highly potent target compound, fosgonimeton ⁴²⁸ (previously ATH-1017), *in vivo*, and to optimize its ⁴²⁹ pharmacological characteristics [105]. These preclin-
430 ical studies demonstrated the activity of fosgo-AM, the active metabolite of the prodrug, fosgonimeton. 432 Upon peripheral administration, fosgo-AM activates 433 the brain HGF/MET system and restores cognitive ⁴³⁴ function in experimental animals at clinically relevant exposures. These results supported further preclinical study with fosgo-AM in other neurotrophic models 437 *in vitro*, and models of neurological disorders*in vivo*. ⁴³⁸ After treatment with fosgo-AM, primary hippocampal neurons demonstrated enhanced synaptogenesis and neurite outgrowth. In an LPS-induced model 441 of cognitive impairment in mice, cognitive deficits ⁴⁴²

Fig. 1. Positive Modulation of HGF/MET by Fosgonimeton. Hypothesized fast-onset effect of fosgonimeton mediated via the NMDA receptor. This mechanism of action represents a departure from drugs acting on the neurotransmitter level only, as the specific HGF/MET interaction could lead to multimodal downstream effects on processes known to be affected in various neurodegenerative conditions.

 were reversed after treatment with fosgonimeton [105]. In a transgenic mouse model of AD, the effect of fosgonimeton on brain activity was evalu-446 ated with quantitative electroencephalogram (qEEG); following subcutaneous (s.c.) treatment of APP/PS1 mice with fosgonimeton, the high frequency rela- tive qEEG spectral power was enhanced and low frequency bands were reduced with statistical sig- nificance [unpublished data]. Thus, treatment with fosgo-AM significantly enhanced synaptogenesis,

functional synaptic strength, and neurite outgrowth, 453 demonstrating that it induces neurotrophic CNS ⁴⁵⁴ effects that were similar to those of exogenous HGF 455 in peripheral disease relevant tissues [106]. These 456 effects are summarized in Fig. 1, which depicts 457 the mechanism of action of fosgonimeton, including the downstream outcomes based on studies 459 with fosgonimeton $[105, 106]$ as well as previously described effects of HGF/MET activity [79, 461 80]. 462

In summary, and in light of the above considera- ⁴⁶³ tions on druggable targets in AD, the results of these preclinical studies support the potential of positively modulating the HGF/MET neurotrophic system in AD, and of fosgonimeton, as a novel compound and intervention with the potential to address several known aspects contributing to neurodegeneration.

CURRENT CLINICAL DEVELOPMENT ⁴⁷⁰ **OF COMPOUNDS PROMOTING HGF/MET FOR ALZHEIMER'S DISEASE** 472

Fosgonimeton, a highly specific, small-molecule 473 positive modulator of the HGF/MET neurotrophic 474 system, is currently in late stage clinical development for AD. To accelerate the development process 476 (Fig. 2), the sponsor, Athira Pharma, Inc. (Athira) 477 has taken an atypical approach by initiating long 478 term toxicology studies at risk in parallel to Phase 479 I, with results coinciding with the read out from 480 human pharmacology. This Phase Ia/1b study had 481 a standard placebo-controlled single ascending dose 482

Fig. 2. Clinical Development of Fosgonimeton for Alzheimer's Disease.

 (SAD)/multiple ascending dose (MAD) design. The study also protocolled a separate cohort of subjects with AD to receive a fixed dose of 40 mg once daily by s.c. injection for 9 days. Quantitative EEG and event- related potential (ERP) P300 latency were measured over time to support human blood-brain barrier pen- etration of fosgonimeton, and increase confidence in potential pro-cognitive effects, respectively [107].

increase contidence in

increase conditions (a syncovirial Co., Ldd.) is note-
translate as a synconomized parameter of the continuation of the syncomized and Schwass III (ITFT.

The proof in periodic properties parameters Upon completion of the Phase Ia/b study, Phase II (ACT-AD; NCT04491006), and Phase II/III (LIFT- AD; NCT04488419) studies of fosgonimeton were launched; both are 26-week double-blind, placebo- controlled trials in subjects with mild to moderate AD, with a largely mirrored design but different objectives. While ACT-AD (*N*= 77, completed) was powered to replicate and extend the Phase Ib obser- vation on ERP P300 latency in AD subjects [107], LIFT-AD (N revised upon interim analysis, recruit- ing) is powered as a potentially confirmatory trial. A unique feature is that both trials were started in parallel rather than sequentially, to allow results from ACT-AD analysis to ascertain the presence of positive biological signals (on cognition, function, and biomarkers) and be utilized for optimization of conduct and analysis of LIFT-AD [108, 109]. The primary endpoint for ACT-AD was ERP P300 latency, a functional measure of working memory processing speed that has recently been reviewed as a novel non-invasive, objective neuroplasticity biomarker [110]; secondary endpoints measuring cognition, function, and behavior were also included in the study. The primary endpoint for LIFT-AD is the composite Global Statistical Test [75], which is a mathematical algorithm that combines the scores from cognition (AD Assessment Scale-Cognitive Subscale [ADAS-Cog11]), and either global impres- sion of change (AD Cooperative Study-Clinical Global Impression of Change [ADCS-CGIC]), or function (AD Cooperative Study-Activities of Daily Living [ADCS-ADL23]). Topline results from ACT- AD were announced in June and August 2022 [108, 109], and a manuscript is in preparation. Data for LIFT-AD are currently expected in 2023. An open label extension following the completion of either ACT-AD or LIFT-AD is currently ongoing, allowing eligible and interested participants to receive up to an additional 18 months of open label treatment.

 Two other plasmid-mediated products that inter- act with HGF, from independent companies, are also in clinical development. HGF plasmid (AMG0001, AnGes, Inc. and Mitsubishi Tanabe) is DNA-based and encodes the human HGF gene. It is administered

intramuscularly into the lower limb and is targeted 535 to improve peripheral vascularization. AMG001 is approved in Japan and in late-stage development in 537 the US for the long-term treatment of chronic arterial occlusive disease and arteriosclerosis obliterans, $\frac{539}{2}$ resulting in lower limb ulcers.

VM202 (Helixmith Co., Ltd.) is non-viral plasmid $_{541}$ DNA product designed to express recombinant HGF $_{542}$ protein peripherally in nerve and Schwann cells to 543 promote nerve system regeneration and induce the $\frac{544}{2}$ formation of microvascular blood vessels. VM202 is being evaluated for the treatment of diabetic periph-
₅₄₆ eral neuropathy, diabetic foot ulcer, amyotrophic 547 lateral sclerosis, claudication, Charcot Marie Tooth 548 disease, and coronary artery disease (Helixmith Co., \qquad 549 Ltd.). At least 10 clinical studies have been completed with VM202. Both plasmid-based drugs increase vas-

₅₅₁ cular perfusion, which confirms the pharmacological 552 effects of HGF/MET modulation. In common with 553 AMG0001, VM202 is a large molecule that does not penetrate the CNS and therefore is not applicable for $\frac{555}{555}$ the treatment of AD or other CNS neurodegenerative conditions. $\frac{557}{200}$

SUMMARY AND CONCLUSIONS

In the AD arena, limiting diagnosis and therapy 559 to investigate the "classical hallmarks" of the disease may not sufficiently address the most urgent 561 patient, caregiver, or societal needs for new, safe, 562 and effective, and accessible therapies which include $\frac{563}{663}$ the symptomatic stages; this continued focus on the $\frac{564}{564}$ pre-dementia stages may lead to a circular logic in 565 selecting experimental patient populations, therapeutic interventions, and outcomes. It is further proposed $_{567}$ that clinical research should also focus on recent, ₅₆₈ novel insights in the pathophysiology of AD, in particular, based on proteomics, which may provide a broader characterization of the complex disease processes in AD, and potentially allow for a better $\frac{572}{2}$ delineation of study populations in the future $[30, 39,$ 573 53, 111, 112]. ⁵⁷⁴

A re-focused and innovative approach to developing effective drugs for AD is needed that incorporates novel elements in the study design including patient selection, type of interventions, and also key outcomes. For example, a highly specific, yet multi-pronged intervention that exerts positive modulation of HGF/MET is currently being tested in clinical trials. Findings from these trials could pro- ⁵⁸² vide support for differentiated approaches for clinical 583

 development of innovative drugs for treating AD and may offer a way forward to achieving effective treat- ment for this devastating disease that has evaded research for too long.

⁵⁸⁸ **ACKNOWLEDGMENTS**

 The authors would like to acknowledge the edi- torial assistance of Richard Perry, PharmD and Josh Pan, PhD in the preparation of this manuscript, which was supported by Athira Pharma, Inc., Bothell, WA.

 The ACT-AD trial is supported by a grant from the National Institute on Aging of the National Institutes of Health under Award Number R01AG06268. The information presented in this manuscript is solely the responsibility of Athira and does not necessarily rep- resent the official views of the National Institutes of ⁵⁹⁹ Health.

⁶⁰⁰ **FUNDING**

⁶⁰¹ The authors have no funding to report.

⁶⁰² **CONFLICT OF INTEREST**

⁶⁰³ HJM and KJC are employees of and hold stock in ⁶⁰⁴ Athira Pharma, Inc.

⁶⁰⁵ **DATA AVAILABILITY**

⁶⁰⁶ No primary data were presented in this review; ⁶⁰⁷ all cited data referenced from peer-reviewed publi-⁶⁰⁸ cations.

⁶⁰⁹ **REFERENCES**

- ⁶¹⁰ [1] Alzheimer's Association (2022) Alzheimer's disease facts ⁶¹¹ and figures. *Alzheimers Dement* **18**, 700-789.
- ⁶¹² [2] GBD 2019 Dementia Forecasting Collaborators (2022) ⁶¹³ Estimation of the global prevalence of dementia in 2019 ⁶¹⁴ and forecasted prevalence in 2050: An analysis for the ⁶¹⁵ Global Burden of Disease Study 2019. *Lancet Public* ⁶¹⁶ *Health* **7**, e105-e125.
- ⁶¹⁷ [3] Scheltens P, De Strooper B, Kivipelto M, Holstege H, ⁶¹⁸ Chetelat G, Teunissen CE, Cummings J, van der Flier WM ⁶¹⁹ (2021) Alzheimer's disease. *Lancet* **397**, 1577-1590.
- ⁶²⁰ [4] Tahami Monfared AA, Byrnes MJ, White LA, Zhang ⁶²¹ Q (2022) The humanistic and economic burden of ⁶²² Alzheimer's disease. *Neurol Ther* **11**, 553-569.
- ⁶²³ [5] van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen ⁶²⁴ C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, ⁶²⁵ Froelich L, Katayama S, Sabbagh M, Vellas B, Watson ⁶²⁶ D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T (2022) ⁶²⁷ Lecanemab in early Alzheimer's disease. *N Engl J Med*, ⁶²⁸ doi: 10.1056/NEJMoa2212948.
- [6] Caroli A, Frisoni GB; Alzheimer's Disease Neuroimag- ⁶²⁹ ing Initiative (2010) The dynamics of Alzheimer's disease 630 biomarkers in the Alzheimer's Disease Neuroimaging Ini- ⁶³¹ tiative cohort. *Neurobiol Aging* **31**, 1263-1274. ⁶³²
- [7] Ower AK, Hadjichrysanthou C, Gras L, Goudsmit J, 633 Anderson RM, de Wolf F; Alzheimer's Disease Neu- ⁶³⁴ roimaging Initiative (2018) Temporal association patterns 635 and dynamics of amyloid- β and tau in Alzheimer's dis- $\qquad \qquad$ 636 ease. *Eur J Epidemiol* 33, 657-666. 637
- [8] Cerejeira J, Lagarto L, Mukaetova-Ladinska EB (2012) ⁶³⁸ Behavioral and psychological symptoms of dementia. 639 *Front Neurol* **3, 73.** 640
- [9] Deb A, Thornton JD, Sambamoorthi U, Innes K (2017) 641 Direct and indirect cost of managing Alzheimer's disease 642 and related dementias in the United States. *Expert Rev* 643 *Pharmacoecon Outcomes Res* **17**, 189-202. ⁶⁴⁴
- acknowledge the edi-

(8) Cerejeira *1. Lagarto* L. Makeetova-Lagarisa and peychological symptoms of the miximum and Dosh

Revivant and peychological symptoms of the Hationical Revivant and peychological symptoms of the A [10] El-Hayek YH, Wiley RE, Khoury CP, Daya RP, Ballard 645 C, Evans AR, Karran M, Molinuevo JL, Norton M, Atri A 646 (2019) Tip of the iceberg: Assessing the global socioeco- ⁶⁴⁷ nomic costs of Alzheimer's disease and related dementias 648 and strategic implications for stakeholders. *J Alzheimers* 649 *Dis* **70**, 323-341. ⁶⁵⁰
	- [11] Dauphinot V, Potashman M, Levitchi-Benea M, Su R, 651 Rubino I, Krolak-Salmon P (2022) Economic and care- ⁶⁵² giver impact of Alzheimer's disease across the disease 653 spectrum: A cohort study. *Alzheimers Res Ther* **14**, 34. ⁶⁵⁴
	- [12] Wong W (2020) Economic burden of Alzheimer disease 655 and managed care considerations. Am J Manag Care 26(8 656 **Suppl)**, S177-S183. 657
	- [13] Wübker A, Zwakhalen SM, Challis D, Suhonen R, Karls- 658 son S, Zabalegui A, Soto M, Saks K, Sauerland D (2015) 659 Costs of care for people with dementia just before and 660 after nursing home placement: Primary data from eight 661 European countries. *Eur J Health Econ* **16**, 689-707. ⁶⁶²
	- [14] Spiegl K, Luttenberger K, Graessel E, Becker L, Scheel J, 663 Pendergrass A (2021) Predictors of institutionalization in 664 users of day care facilities with mild cognitive impairment 665 to moderate dementia. *BMC Health Serv Res* 21, 1009. 666
	- [15] Weimer DL, Sager MA (2009) Early identification and 667 treatment of Alzheimer's disease: Social and fiscal out- ⁶⁶⁸ comes. *Alzheimers Dement* **5**, 215-226. ⁶⁶⁹
	- [16] Feldman HH, Pirttila T, Dartigues JF, Everitt B, Van 670 Baelen B, Schwalen S, Kavanagh S (2009) Treatment 671 with galantamine and time to nursing home placement in 672 Alzheimer's disease patients with and without cerebrovas- 673 cular disease. *Int J Geriatr Psychiatry* **24**, 479-488. ⁶⁷⁴
	- [17] Wattmo C, Londos E, Minthon L (2018) Short-term 675 response to cholinesterase inhibitors in Alzheimer's dis- 676 ease delays time to nursing home placement. *Curr* 677 *Alzheimer Res* **15**, 905-916. ⁶⁷⁸
	- [18] Wimo A, Winblad B, Stoeffler A, Wirth Y, Moebius HJ 679 (2003) Resource utilisation and cost analysis of meman- ⁶⁸⁰ tine in patients with moderate to severe Alzheimer's 681 disease. *Pharmacoeconomics* **21**, 327–340. ⁶⁸²
	- [19] Zhu CW, Sano M (2006) Economic considerations in the 683 management of Alzheimer's disease. *Clin Interv Aging* **1**, ⁶⁸⁴ 143-154. 685
	- [20] Mittelman MS, Haley WE, Clay OJ, Roth DL (2006) 686 Improving caregiver well-being delays nursing home 687 placement of patients with Alzheimer disease. *Neurology* 688 **67**, 1592-1599. ⁶⁸⁹
	- [21] Lam J, Jun H, Cho SK, Hanson M, Mattke S (2021) Projec- 690 tion of budgetary savings to US state Medicaid programs 691 from reduced nursing home use due to an Alzheimer's 692 disease treatment. *Alzheimers Dement* **13**, e12159. ⁶⁹³
- ⁶⁹⁴ [22] Prados MJ, Liu Y, Jun H, Lam J, Mattke S (2022) Project-⁶⁹⁵ ing the long-term societal value of a disease-modifying ⁶⁹⁶ treatment for Alzheimer's disease in the United States. ⁶⁹⁷ *Alzheimers Dement* **18**, 142-151.
- ⁶⁹⁸ [23] Cummings J, Lai TJ, Hemrungrojn S, Mohandas E, ⁶⁹⁹ Yun Kim S, Nair G, Dash A (2016) Role of donepezil ⁷⁰⁰ in the management of neuropsychiatric symptoms in ⁷⁰¹ Alzheimer's disease and dementia with Lewy bodies. *CNS* ⁷⁰² *Neurosci Ther* **22**, 159-166.
- ⁷⁰³ [24] Kwon CY, Lee B (2021) Prevalence of behavioral and psy-⁷⁰⁴ chological symptoms of dementia in community-dwelling ⁷⁰⁵ dementia patients: A systematic review. *Front Psychiatry* ⁷⁰⁶ **12**, 741059.
- ⁷⁰⁷ [25] Mukherjee A, Biswas A, Roy A, Biswas S, Gangopad-⁷⁰⁸ hyay G, Das SK (2017) Behavioural and psychological ⁷⁰⁹ symptoms of dementia: Correlates and impact on care-⁷¹⁰ giver distress. *Dement Geriatr Cogn Dis Extra* **7**, 711 354-365
- ⁷¹² [26] Yunusa I, Alsumali A, Garba AE, Regestein QR, Eguale ⁷¹³ T (2019) Assessment of reported comparative effec-⁷¹⁴ tiveness and safety of atypical antipsychotics in the ⁷¹⁵ treatment of behavioral and psychological symptoms of ⁷¹⁶ dementia: A network meta-analysis. *JAMA Netw Open* **2**, ⁷¹⁷ e190828.
- ⁷¹⁸ [27] Cummings J (2021) New approaches to symptomatic treat-⁷¹⁹ ments for Alzheimer's disease. *Mol Neurodegener* **16**, 2.
- ⁷²⁰ [28] Kim B, Noh GO, Kim K (2021) Behavioural and psycho-⁷²¹ logical symptoms of dementia in patients with Alzheimer's ⁷²² disease and family caregiver burden: A path analysis. *BMC* ⁷²³ *Geriatr* **21**, 160.
- ⁷²⁴ [29] Ayton S, Bush AI (2021) Beta-amyloid: The known ⁷²⁵ unknowns. *Ageing Res Rev* **65**, 101212.
- ⁷²⁶ [30] Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der ⁷²⁷ Kant R, Ossenkoppele R, Blennow K, Cummings J, van ⁷²⁸ Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois ⁷²⁹ B (2022) The probabilistic model of Alzheimer disease: ⁷³⁰ The amyloid hypothesis revised. *Nat Rev Neurosci* **23**, ⁷³¹ 53-66.
- ⁷³² [31] Reiss AB, Montufar N, DeLeon J, Pinkhasov A, Gomolin ⁷³³ IH, Glass AD, Arain HA, Stecker MM (2021) Alzheimer ⁷³⁴ disease clinical trials targeting amyloid: Lessons learned ⁷³⁵ from success in mice and failure in humans. *Neurologist* ⁷³⁶ **26**, 52-61.
- ⁷³⁷ [32] Sabbagh MN, Hendrix S, Harrison JE (2019) FDA position ⁷³⁸ statement "Early Alzheimer's disease: Developing drugs ⁷³⁹ for treatment, Guidance for Industry". *Alzheimers Dement* ⁷⁴⁰ **5**, 13-19.
- ⁷⁴¹ [33] Birks J (2006) Cholinesterase inhibitors for Alzheimer's ⁷⁴² disease. *Cochrane Database Syst Rev*, CD005593.
- ⁷⁴³ [34] Budd Haeberlein S, Salloway S, Aisen P, Chalkias S, Chen ⁷⁴⁴ T, Cohen S, Dent G, Hansson O, Harrison K, von Hehn ⁷⁴⁵ C, Iwatsubo T, Mallinckrodt C, Mummery CJ, Muralid-⁷⁴⁶ haran KK, Nestorov I, Nisenbaum L, Rajagovindan R, ⁷⁴⁷ Skordos L, Tian Y, van Dyck CH, Vellas B, Wu S, Zhu Y, ⁷⁴⁸ Sandrock A (2021) Evaluation of aducanumab efficacy in ⁷⁴⁹ early Alzheimer's disease. Paper presented at 15th Interna-⁷⁵⁰ tional Conference on Alzheimer's & Parkinson's Diseases ⁷⁵¹ virtual conference, March 9-14, 2021.
- ⁷⁵² [35] McShane R, Westby MJ, Roberts E, Minakaran N, Schnei-⁷⁵³ der L, Farrimond LE, Maayan N, Ware J, Debarros J (2019) ⁷⁵⁴ Memantine for dementia. *Cochrane Database Syst Rev* **3**, ⁷⁵⁵ CD003154.
- ⁷⁵⁶ [36] Rockwood K (2004) Size of the treatment effect on cog-⁷⁵⁷ nition of cholinesterase inhibition in Alzheimer's disease. ⁷⁵⁸ *J Neurol Neurosurg Psychiatry* **75**, 677-685.
- [37] Gauthier S, Wirth Y, Moebius HJ (2005) Effects of 759 memantine on behavioural symptoms in Alzheimer's 760 disease patients: An analysis of the Neuropsychiatric 761 Inventory (NPI) data of two randomised, controlled stud- ⁷⁶² ies. *Int J Geriatr Psychiatry* **20**, 459-464. ⁷⁶³
- [38] Cummings J, Feldman, HH, Scheltens P (2019) The ⁷⁶⁴ "rights" of precision drug development for Alzheimer's 765 disease. *Alzheimers Res Therapy* 11, 76. 766
- [39] Rayaprolu S, Higginbotham L, Bagchi P, Watson CM, 767 Zhang T, Levey AI, Rangaraju S, Seyfried NT (2021) 768 Systems-based proteomics to resolve the biology of 769 Alzheimer's disease beyond amyloid and tau. *Neuropsy-* 770 *chopharmacology* **46**, 98-115. ⁷⁷¹
- [40] van Bokhoven P, de Wilde A, Vermunt L, Leferink PS, $\frac{772}{2}$ Heetveld S, Cummings J, Scheltens P, Vijverberg EGB 773 (2021) The Alzheimer's disease drug development land- ⁷⁷⁴ scape. *Alzheimers Res Ther* 13, 186. 775
- [41] Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Tor- 776 rent J (2021) Deconstructing Alzheimer's disease: How 777 to bridge the gap between experimental models and the $\frac{778}{2}$ human pathology? *Int J Mol Sci* 22,8769. 779
- [42] de Aquino CH (2021) Methodological issues in ran-
 780 domized clinical trials for prodromal Alzheimer's and ⁷⁸¹ Parkinson's disease. *Front Neurol* **12**, 694329. ⁷⁸²
- [43] Aisen PS, Bateman RJ, Carrillo M, Doody R, Johnson 783 K, Sims JR, Sperling R, Vellas B (2021) Platform tri- ⁷⁸⁴ als to expedite drug development in Alzheimer's disease: $\frac{785}{60}$ A report from the EU/US CTAD Task Force. *J Prev* 786 *Alzheimers Dis* **8**, 306-312. ⁷⁸⁷
- [44] Cummings J, Ritter A, Zhong K (2018) Clinical trials 788 for disease-modifying therapies in Alzheimer's disease: 789 A primer, lessons learned, and a blueprint for the future. *J* 790 *Alzheimers Dis* **64**, S3-S22. ⁷⁹¹
- [45] Leber P (1996) Observations and suggestions on antide- ⁷⁹² mentia drug development. *Alzheimer Dis Assoc Disord* **10**, ⁷⁹³ $31-35.$ 794
- [46] Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR Jr, 795 Jones RW, Morris JC, Raskin J, Dowsett SA, Scheltens ⁷⁹⁶ P (2016) Drug development in Alzheimer's disease: The 797 path to 2025. *Alzheimers Res Ther* **8**, 39. 798
- racice of rehavoional and psychophot 3. Higgshoptol S. Higgshoptology 46, Silver and p [47] Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feld- ⁷⁹⁹ man HH, Frisoni GB, Hampel H, Jagust WJ, Johnson 800 KA, Knopman DS, Petersen RC, Scheltens P, Sperling 801 RA, Dubois B (2016) A/T/N: An unbiased descriptive 802 classification scheme for Alzheimer disease biomarkers. 803 *Neurology* **87**, 539-547. ⁸⁰⁴
	- [48] Grøntvedt GR, Lauridsen C, Berge G, White LR, Salvesen 805 \varnothing , Bråthen G, Sando SB (2020) The amyloid, tau, and neurodegeneration $(A/T/N)$ classification applied to a clinical 807 research cohort with long-term follow-up. *J Alzheimers* 808 *Dis* **74**, 829-37. ⁸⁰⁹
	- [49] Lin RR, Xue YY, Li XY, Chen YH, Tao OO, Wu ZY (2021) 810 Optimal combinations of $AT(N)$ biomarkers to determine 811 longitudinal cognition in the Alzheimer's disease. *Front* 812 *Aging Neurosci* **13**, 718959. ⁸¹³
	- [50] Hampel H, Cummings J, Blennow K, Gao P, Jack CR Jr, 814 Vergallo A (2021) Developing the ATX(N) classification 815 for use across the Alzheimer disease continuum. *Nat Rev* 816 *Neurol* **17**, 580-589. 817
	- [51] Decourt B, D'Souza GX, Shi J, Ritter A, Suazo J, Sabbagh 818 MN (2022) The cause of Alzheimer's disease: The theory 819 of multipathology convergence to chronic neuronal stress. 820 *Aging Dis* **13**, 37-60. ⁸²¹
	- [52] Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, 822 Yin L, Higginbotham LA, Guajardo A, White B, Troncoso 823

 JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT (2020) Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astro-cyte activation. *Nat Med* **26**, 769-780.

- ⁸³³ [53] Knopman DS, Amieva H, Petersen RC, Chetelat G, Holtz- ´ ⁸³⁴ man DM, Hyman BT, Nixon RA, Jones DT (2021) ⁸³⁵ Alzheimer disease. *Nat Rev Dis Primers* **7**, 33.
- ⁸³⁶ [54] Boder EJ, Banerjee IA (2021) Alzheimer's disease: Cur-⁸³⁷ rent perspectives and advances in physiological modeling. ⁸³⁸ *Bioengineering* **8**, 211.
- ⁸³⁹ [55] Higginbotham L, Ping L, Dammer EB, Duong DM, ⁸⁴⁰ Zhou M, Gearing M, Hurst C, Glass JD, Factor SA, ⁸⁴¹ Johnson ECB, Hajjar I, Lah JJ, Levey AI, Seyfried ⁸⁴² NT (2020) Integrated proteomics reveals brain-based ⁸⁴³ cerebrospinal fluid biomarkers in asymptomatic and symp-⁸⁴⁴ tomatic Alzheimer's disease. *Sci Adv* **6**, eaaz9360.
- ⁸⁴⁵ [56] Mullard A (2021) Failure of first anti-tau antibody in ⁸⁴⁶ Alzheimer disease highlights risks of history repeating. ⁸⁴⁷ *Nat Rev Drug Discov* **20**, 3-5.
- ⁸⁴⁸ [57] Oxford AE, Stewart ES, Rohn TT (2020) Clinical trials in ⁸⁴⁹ Alzheimer's disease: A hurdle in the path of remedy. *Int J* ⁸⁵⁰ *Alzheimers Dis* **2020**, 5380346.
- ⁸⁵¹ [58] Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh ⁸⁵² M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teich-⁸⁵³ mann M, Habert MO, Nordberg A, Blennow K, Galasko D, ⁸⁵⁴ Stern Y, Rowe CC, Salloway S, Schneider LS, Cummings ⁸⁵⁵ JL, Feldman HH (2021) Clinical diagnosis of Alzheimer's ⁸⁵⁶ disease: Recommendations of the International Working ⁸⁵⁷ Group. *Lancet Neurol* **20**, 484-496.
- ⁸⁵⁸ [59] Frank B, Ally M, Tripodis Y, Puzo C, Labriolo C, Hurley ⁸⁵⁹ L, Martin B, Palmisano J, Chan L, Steinberg E, Turk K, $Budson A$, $OA'Connor M$, Au R, Qiu WQ, Goldstein L, ⁸⁶¹ Kukull W, Kowall N, Killiany R, Stern R, Stein T, McKee ⁸⁶² A, Mez J, Alosco M (2022) Trajectories of cognitive ⁸⁶³ decline in brain donors with autopsy-confirmed Alzheimer ⁸⁶⁴ disease and cerebrovascular disease. *Neurology* **98**, ⁸⁶⁵ e2454-e2464.
- ⁸⁶⁶ [60] Kametani F, Hasegawa M (2018) Reconsideration of amy-⁸⁶⁷ loid hypothesis and tau hypothesis in Alzheimer's disease. ⁸⁶⁸ *Front Neurosci* **12**, 25.
- ⁸⁶⁹ [61] Sabbagh M, Miller J, Jones S, Ritter A, Shi J, DeCourt B, ⁸⁷⁰ Wint D (2021) Does informant-based reporting of cog-⁸⁷¹ nitive decline correlate with age-adjusted hippocampal ⁸⁷² volume in mild cognitive impairment and Alzheimer's ⁸⁷³ disease? *J Alzheimers Dis Rep* **5**, 207-211.
- ⁸⁷⁴ [62] Cummings J (2018) Lessons learned from Alzheimer dis-⁸⁷⁵ ease: Clinical trials with negative outcomes. *Clin Transl* ⁸⁷⁶ *Sci* **11**, 147-152.
- ⁸⁷⁷ [63] Herrup K (2022) Fallacies in neuroscience: The ⁸⁷⁸ Alzheimer's Edition. *eNeuro* **9**, ENEURO.0530-21.2021.
- ⁸⁷⁹ [64] Iacono D, Resnick SM, O'Brien R, Zonderman AB, An ⁸⁸⁰ Y, Pletnikova O, Rudow G, Crain B, Troncoso JC (2014) ⁸⁸¹ Mild cognitive impairment and asymptomatic Alzheimer 882 disease subjects: Equivalent β-amyloid and tau loads with ⁸⁸³ divergent cognitive outcomes. *J Neuropathol Exp Neurol* ⁸⁸⁴ **73**, 295-304.
- ⁸⁸⁵ [65] Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, ⁸⁸⁶ Scotton TC, Barroeta-Espar I, Fernandez-Carballo L, de ⁸⁸⁷ Munain EL, Perez J, Marquie M, Serrano-Pozo A, Frosch ⁸⁸⁸ MP, Lowe V, Parisi JE, Petersen RC, Ikonomovic MD,

López OL, Klunk W, Hyman BT, Gómez-Isla T (2013) 889 Dissecting phenotypic traits linked to human resilience to 890 Alzheimer's pathology. *Brain* **136**, 2510-2526. ⁸⁹¹

- [66] Chen SJ, Tsai HH, Tsai LK, Tang SC, Lee BC, Liu 892 HM, Yen RF, Jeng JS (2019) Advances in cerebral amy-
893 loid angiopathy imaging. *Ther Adv Neurol Disord* 12, 894 1756286419844113
- [67] Klohs J (2019) An integrated view on vascular dysfunction in Alzheimer's disease. *Neurodegener Dis* **19**, ⁸⁹⁷ 109-127. ⁸⁹⁸
- [68] Zhao M, Jiang XF, Zhang HQ, Sun JH, Pei H, Ma LN, 899 Cao Y, Li H (2021) Interactions between glial cells and the 900 blood-brain barrier and their role in Alzheimer's disease. 901 *Ageing Res Rev* **72**, 101483. ⁹⁰²
- [69] Chang R, Yee KL, Sumbria RK (2017) Tumor necrosis 903 factor α inhibition for Alzheimer's disease. *J Cent Nerv* 904 *Syst Dis* 9, 1179573517709278. 905
- [70] Jacobs N, Theunissen B (2022) It's groundhog day! 906 What can the history of science say about the crisis in 907 Alzheimer's disease research? *J Alzheimers Dis* **90**, 1401- ⁹⁰⁸ 1415. 909
- [71] Duara R, Barker W (2022) Heterogeneity in Alzheimer's 910 disease diagnosis and progression rates: Implications for ⁹¹¹ therapeutic trials. *Neurotherapeutics* **19**, 8-25. ⁹¹²
- [72] Yiannopoulou KG, Anastasiou AI, Zachariou V, Pelidou ⁹¹³ SH (2019) Reasons for failed trials of disease-modifying 914 treatments for Alzheimer disease and their contribution in 915 recent research. *Biomedicines* 7, 97.
- [73] Wessels AM, Andersen SW, Dowsett SA, Siemers ER ⁹¹⁷ (2018) The Integrated Alzheimer's Disease Rating Scale 918 (iADRS) Findings from the EXPEDITION3 Trial. *J Prev* 919 *Alzheimers Dis* **5**, 134-136. ⁹²⁰
- 769.780.

Top-127.

Top-127.

Top-127.

109-127.

109-127.

109-127.

109-127.

2018 Members' also as a proposition of Refrequence

Note the method by the proof by the part (PL) Substitute of the part (PL) and Members' al [74] Wang J, Logovinsky V, Hendrix SB, Stanworth SH, Per- 921 domo C, Xu L, Dhadda S, Do I, Rabe M, Luthman J, ⁹²² Cummings J, Satlin A (2016) ADCOMS: A composite 923 clinical outcome for prodromal Alzheimer's disease trials. ⁹²⁴ *J* Neurol Neurosurg Psychiatry 87, 993-999.
	- [75] O'Brien PC (1984) Procedures for comparing samples 926 with multiple endpoints. *Biometrics* **40**, 1079-1087. 927
	- [76] NQMedical, AP/PD2021. https://www.prweb.com/rele ⁹²⁸ ases/nq_medical_a_digital_biomarker_discovery_platform 929 unveils latest alzheimers disease clinical trial results at ⁹³⁰ ad pd 2021 international conference/prweb17785720. ⁹³¹ htm 932
	- [77] Unlearn, AP/PD2021. https://www.unlearn.ai/post/ad-pd- 933 2021-unlearn-will-present-novel-ai-driven-approaches- ⁹³⁴ to-enabling-smaller-more-efficient-alzheimers-clinical- ⁹³⁵ trials 936
	- [78] Food and Drug Administration Guidance for Industry 937 (2018) Early Alzheimer's Disease: Developing Drugs for ⁹³⁸ Treatment. 939
	- [79] Funakoshi H, Nakamura T (2011) Hepatocyte growth ⁹⁴⁰ factor (HGF): Neutrophic functions and therapeutic impli- ⁹⁴¹ cations for neuronal injury/disease. *Curr Signal Tranduct* ⁹⁴² *Ther* **6**, 156-167. ⁹⁴³
	- [80] Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto ⁹⁴⁴ A, Vivien D, Comoglio P, Crepaldi T (2021) HGF and 945 MET: From brain development to neurological disorders. 946 *Front Cell Dev Biol* **9**, 683609. ⁹⁴⁷
	- [81] Nakamura T, Mizuno S (2010) The discovery of hepa-
948 tocyte growth factor (HGF) and its significance for cell 949 biology, life sciences and clinical medicine. *Proc Jpn Acad* 950 *Ser B Phys Biol Sci* **86**, 588-610. ⁹⁵¹
	- [82] Nakamura T, Sakai K, Nakamura T, Matsumoto K (2011) ⁹⁵² Hepatocyte growth factor twenty years on: Much more 953

⁹⁵⁴ than a growth factor. *J Gastroenterol Hepatol* **26 Suppl 1**, ⁹⁵⁵ 188-202.

- ⁹⁵⁶ [83] Akita H, Takagi N, Ishihara N, Takagi K, Murotomi K, ⁹⁵⁷ Funakoshi H, Matsumoto K, Nakamura T, Takeo S (2008) Hepatocyte growth factor improves synaptic localization ⁹⁵⁹ of the NMDA receptor and intracellular signaling after ⁹⁶⁰ excito- toxic injury in cultured hippocampal neurons. *Exp* ⁹⁶¹ *Neurol* **210**, 83-94.
- ⁹⁶² [84] Maina F, Klein R (1999) Hepatocyte growth factor, a ⁹⁶³ versatile signal for developing neurons. *Nat Neurosci* **2**, 964 213-217
- ⁹⁶⁵ [85] Nicoleau C, Benzakour O, Agasse F, Thiriet N, Petit ⁹⁶⁶ J, Prestoz L, Roger M, Jaber M, Coronas V (2009) ⁹⁶⁷ Endogenous hepatocyte growth factor is a niche signal ⁹⁶⁸ for subventricular zone neural stem cell amplification and ⁹⁶⁹ self-renewal. *Stem Cells* **27**, 408-419.
- ⁹⁷⁰ [86] Tyndall SJ, Walikonis RS (2006) The receptor tyrosine ⁹⁷¹ kinase Met and its ligand hepatocyte growth factor are ⁹⁷² clustered at excitatory synapses and can enhance cluster-⁹⁷³ ing of synaptic proteins. *Cell Cycle* **5**, 1560-1568.
- ⁹⁷⁴ [87] Yamada T, Tsubouchi H, Daikuhara Y, Prat M, Comoglio ⁹⁷⁵ PM, McGeer PL, McGeer EG (1004) Immunohistochem-⁹⁷⁶ istry with antibodies to hepatocyte growth factor and its ⁹⁷⁷ receptor protein (c-MET) in human brain tissues. *Brain* ⁹⁷⁸ *Res* **637**, 308-312.
- ⁹⁷⁹ [88] Sun W, Funakoshi H, Nakamura T (2002) Localization and ⁹⁸⁰ functional role of hepatocyte growth factor (HGF) and its ⁹⁸¹ receptor c-met in the rat developing cerebral cortex. *Brain* ⁹⁸² *Res Mol Brain Res* **103**, 36-48.
- ⁹⁸³ [89] Akimoto M, Baba A, Ikeda-Matsuo Y, Yamada MK, Ita-⁹⁸⁴ mura R, Nishiyama N, Ikegaya Y, Matsuki N (2004) ⁹⁸⁵ Hepatocyte growth factor as an enhancer of NMDA ⁹⁸⁶ currents and synaptic plasticity in the hippocampus. *Neu-*⁹⁸⁷ *roscience* **128**, 155-162.
- ⁹⁸⁸ [90] Shimamura M, Sato N, Waguri S, Uchiyama Y, Hayashi ⁹⁸⁹ T, Iida H, Nakamura T, Ogihara T, Kaneda Y, Morishita ⁹⁹⁰ R (2006) Gene transfer of hepatocyte growth factor gene ⁹⁹¹ improves learning and memory in the chronic stage of ⁹⁹² cerebral infarction. *Hypertension* **47**, 742-751.
- ⁹⁹³ [91] Takeuchi D, Sato N, Shimamura M, Kurinami H, Takeda S, ⁹⁹⁴ Shinohara M, Suzuki S, Kojima M, Ogihara T, Morishita 995 R (2008) Alleviation of A β -induced cognitive impairment ⁹⁹⁶ by ultrasound-mediated gene transfer of HGF in a mouse ⁹⁹⁷ model. *Gene Therapy* **15**, 561-571.
- ⁹⁹⁸ [92] Cohen JA (2013) Mesenchymal stem cell transplantation ⁹⁹⁹ in multiple sclerosis. *J Neurol Sci* **333**, 43-49.
- ¹⁰⁰⁰ [93] Doeppner TR, Kaltwasser B, ElAli A, Zechariah A, Her-1001 mann D, Bähr M (2011) Acute hepatocyte growth factor ¹⁰⁰² treatment induces long-term neuroprotection and stroke ¹⁰⁰³ recovery via mechanisms involving neural precursor cell ¹⁰⁰⁴ proliferation and differentiation. *J Cereb Blood Flow* ¹⁰⁰⁵ *Metab* **31**, 1251-1262.
- ¹⁰⁰⁶ [94] Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima ¹⁰⁰⁷ K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama ¹⁰⁰⁸ Y, Okano H, Nakamura M (2011) Human hepatocyte ¹⁰⁰⁹ growth factor promotes functional recovery in primates ¹⁰¹⁰ after spinal cord injury. *PLoS One* **6**, e27706.
- ¹⁰¹¹ [95] Koike H, Ishida A, Shimamura M, Mizuno S, Nakamura ¹⁰¹² T, Ogihara T, Kaneda Y, Morishita R (2006) Prevention ¹⁰¹³ of onset of Parkinson's disease by *in vivo* gene transfer of ¹⁰¹⁴ human hepatocyte growth factor in rodent model: A model ¹⁰¹⁵ of gene therapy for Parkinson's disease. *Gene Therapy* **13**, 1016 1639-1644
- ¹⁰¹⁷ [96] Sun W, Funakoshi H, Nakamura T (2002) Overexpression ¹⁰¹⁸ of HGF retards disease progression and prolongs life span

in a transgenic mouse model of ALS. *J Neurosci* 22, 6537-
1019 **6548.** 1020

- [97] Fenton H, Finch PW, Rubin JS, Rosenberg JM, Taylor WG, 1021 Kuo-Leblanc V, Rodriguez-Wolf M, Baird A, Schipper 1022 HM, Stopa EG (1998) Hepatocyte growth factor (HGF/SF) 1023 in Alzheimer's disease. *Brain Res* **779**, 262–270. ¹⁰²⁴
- [98] Tsuboi Y, Kakimoto K, Nakajima M, Akatsu H, ¹⁰²⁵ Yamamoto T, Ogawa K, Ohnishi T, Daikuhara Y, Yamada 1026 T (2003) Increased hepatocyte growth factor level in cere- ¹⁰²⁷ brospinal fluid in Alzheimer's disease. *Acta Neurol Scand* ¹⁰²⁸ **107**, 81–86. 1029
- [99] Zhao LJ, Wang ZT, Ma YH, Zhang W, Dong Q, Yu JT, Tan 1030 L; Alzheimer's Disease Neuroimaging Initiative (2021) 1031 Associations of the cerebrospinal fluid hepatocyte growth 1032 factor with Alzheimer's disease pathology and cognitive 1033 function. *BMC Neurol* **21**, 387. ¹⁰³⁴
- [100] Hamasaki H, Honda H, Suzuki SO, Hokama M, Kiyohara 1035 Y, Nakabeppu Y, Iwaki T (2014) Down-regulation of MET 1036 in hippocampal neurons of Alzheimer's disease brains. 1037 *Neuropathology* **34**, 84-90. 1038
- [101] Bell KFS, Ducatenzeiler A, Ribeiro-da-Silva A, Duff 1039 K, Bennett DA, Claudio Cuello A (2006) The amyloid 1040 pathology progresses in a neurotransmitter-specific man- ¹⁰⁴¹ ner. *Neurobiol Aging* **27**, 1644-1657. ¹⁰⁴²
- [102] Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips ¹⁰⁴³ K, Gilmour G (2019) Targeting the synapse in Alzheimer's 1044 disease. *Front Neurosci* **13**, 735 ¹⁰⁴⁵
- [103] Mufson EJ, Binder L, Counts SE, DeKosky ST, de Toledo- 1046 Morrell L, Ginsberg SD, Ikonomovic MD, Perez SE, ¹⁰⁴⁷ Scheff SW (2012) Mild cognitive impairment: Pathology 1048 and mechanisms. *Acta Neuropathol* **123**, 13-30. ¹⁰⁴⁹
- [104] Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. 1050 *Science* **298**, 789-791. ¹⁰⁵¹
- [105] Johnston JL, Reda SM, Setti SE, Taylor RW, Berthiaume 1052 A-A, Walker WE, Wu W, Moebius HJ, Church KJ (2022) 1053 Fosgonimeton, a novel positive hepatocyte modulator of 1054 the HGF/MET system, promotes neurotrophic and precog- ¹⁰⁵⁵ nitive effects in models of dementia. *Neurotherapeutics*, 1056 doi.org/10.1007/s13311-022-01325-5. 1057
- [106] Reda S, Johnston J, Taylor RW, Church K (2022) Fosgo- ¹⁰⁵⁸ nimeton, a novel, small molecule positive modulator of the 1059 HGF/MET system is neuroprotective in primary neuron 1060 culture. *Alzheimers Dement* **18** (Suppl 10), e065874. ¹⁰⁶¹
- Hepatocyte growth factor. A

Hepatocyte movement and the street because the case of the case of the street in the street in the street of the street in the street of [107] Hua X, Church K, Walker W, Hostis P, Viardot G, Dan- ¹⁰⁶² jou P, Hendrix S, Moebius HJ (2022) Safety, tolerability, ¹⁰⁶³ pharmacokinetics, and pharmacodynamics of the positive 1064 modulator of HGF/MET, fosgonimeton, in healthy volun-
1065 teers and subjects with Alzheimer's disease: Randomized, 1066 placebo-controlled, double-blind, phase I clinical trial. *J* 1067 *Alzheimers Dis* **86**, 1399-1413. ¹⁰⁶⁸
	- [108] Moebius HJ, Church K, Ooi K-B (2022) Study design and 1069 participant characteristics of a Phase 2 trial of fosgonime-
1070 ton, a novel treatment for mild to moderate Alzheimer's 1071 disease. Presented at the AD/PD 2022 International Con- ¹⁰⁷² ference, Barcelona, Spain. 1073
	- [109] Moebius HJ, Bernick CB, Winner P, Maalouf J, Ooi 1074 K-B, Dickson SP, Hendrix SB, Church K, Olichney 1075 JM (2022) ACT-AD: Fosgonimeton in mild-to-moderate 1076 Alzheimer's disease – First results of a randomized, 1077 placebo-controlled, 26-week Phase 2 proof-of-concept 1078 trial. *Alzheimers Dement* 18 (Suppl 10), e061572. 1079
	- [110] Olichney J, Xia J, Church KJ, Moebius HJ (2022) Predic- 1080 tive power of cognitive biomarkers in neurodegenerative 1081 disease drug development: Utility of the P300 event- ¹⁰⁸² related potential. *Neural Plast* **2022**, 2104880. ¹⁰⁸³

- ¹⁰⁸⁴ [111] Hampel H, Nistico R, Seyfried NT, Levey AI, Modeste ` ¹⁰⁸⁵ E, Lemercier P, Baldacci F, Toschi N, Garaci F, Perry G, ¹⁰⁸⁶ Emanuele E, Valenzuela PL, Lucia A, Urbani A, Sance-¹⁰⁸⁷ sario GM, Mapstone M, Corbo M, Vergallo A, Lista S; ¹⁰⁸⁸ Alzheimer Precision Medicine Initiative (APMI) (2021) ¹⁰⁸⁹ Omics sciences for systems biology in Alzheimer's dis-¹⁰⁹⁰ ease: State-of-the-art of the evidence. *Ageing Res Rev* **69**, 101346.
- [112] Cummings J, Lanctôt K (2022) Phase II Drug Devel- 1091 opment for Alzheimer's Disease: A Panel Discussion. ¹⁰⁹² Presented at the Alzheimer's Association International 1093 Conference. 1094

Uncorrected Author Proof